2017 WATER QUALITY DATA - DETECTED CONTAMINANTS

U of I Samples Collected within the Parent Water Supply by Illinois-American Water Company

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>Sampled by: Date</th>
<th>MCLG</th>
<th>AL</th>
<th>90th Percentile</th>
<th># Detections Exceeding AL</th>
<th>Violation?</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>U of I - 2017</td>
<td>0.15</td>
<td>0.15</td>
<td>1.3</td>
<td>0</td>
<td>NO</td>
<td>Cremation of household plumbing; Erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>U of I - 2017</td>
<td>0</td>
<td>17</td>
<td>7.1</td>
<td>1</td>
<td>NO</td>
<td>Cremation of household plumbing; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

REGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>Sampled by: Date</th>
<th>MCL</th>
<th>Level Found**</th>
<th>Range of Detections</th>
<th>Violation?</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (ppb)</td>
<td>IAWC 2015</td>
<td>0</td>
<td>10</td>
<td>2.0</td>
<td>NO</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and aluminum factories</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>IAWC</td>
<td>4</td>
<td>4</td>
<td>0.93</td>
<td>NO</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Total Microbial Activity (UFC/mL)</td>
<td>U of I - NA</td>
<td>59</td>
<td>19.6</td>
<td>12.01 - 29.0</td>
<td>NO</td>
<td>Runoff from glass and aluminum factories</td>
</tr>
<tr>
<td>Combined Bacteria (ppCS)</td>
<td>IAWC 2014</td>
<td>0</td>
<td>3</td>
<td>1.3 - 1.5</td>
<td>NO</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>TOX (Total Trihalomethanes) (ppb)</td>
<td>U of I - NA</td>
<td>60</td>
<td>54.1</td>
<td>24.3 - 166.0</td>
<td>NO</td>
<td>Runoff from drinking water distribution</td>
</tr>
</tbody>
</table>

STATE REQUIRED CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>Sampled by: Date</th>
<th>MCL</th>
<th>Level Found</th>
<th>Range of Detections</th>
<th>Violation?</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm)</td>
<td>IAWC 2014</td>
<td>59</td>
<td>57.3</td>
<td>57.3 - 57.3</td>
<td>NO</td>
<td>Erosion of natural deposits; Leaching</td>
</tr>
</tbody>
</table>

DEFINITIONS

MCLG: Maximum Contaminant Level Goal. The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

MRDLG: Maximum Residual Disinfectant Level Goal. The level of a disinfectant added to drinking water as a part of the treatment process or in auxiliary use to inactivate microbiological contaminants, or to protect against microbial contamination when按规定的

MRDL: Maximum Residual Disinfectant Level. The level of a disinfectant allowed in drinking water. There is convincing evidence that a disinfectant is necessary for control of microbial contaminants.

Lead and Copper

- **90th Percentile:** A measurement of the natural rate of disintegration of radioactive contaminants in water.
- **Average:** Regulatory compliance with some MCLs is based on running annual averages of monthly samples.
- **Action Level:** The concentration of a contaminant that, when exceeded, triggers treatment or other required actions by the water supply.
- **Action Level Goal:** The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

####氟化物

- Fluoride is added to the water supply to help promote oral health. The Illinois Department of Public Health recommends an optimal fluoride range of 0.9 mg/L to 1.2 mg/L.

水合氯酸

- Combined Bacteria (ppCS): Level exceeded the state's limit.

Violations:

- **Level Found:** This column represents an average of sample result data collected during the sample period. In some cases, it may represent a single sample if only one sample was collected. For lead and copper, the level found equals the 90th percentile of all samples taken.

Range of Detections: This column represents a range of individual sample results, from lowest to highest, that were collected during the sample period.

Testing:

- **Leaching:** Not detectable at testing limits.

Not applicable:

- Date Sampled: If sample date appears, the testing was conducted in 2017.

Also milligrams per liter:

- **ppb:** parts per billion. Also micrograms per liter

ALGs:

- Action Level Goal: The level of a contaminant that, when exceeded, triggers treatment or other required actions by the water supply. ALGs allow for a margin of safety.

NA:

- Not applicable.

pCi/L: Picocuries per liter. A measurement of the natural rate of disintegration of radioactive contaminants in water.

ppm: parts per million. Also micrograms per liter - or one ounce in 7,350 gallons of water.

pM: parts per million. Also micrograms per liter - or one ounce in 7,350,000 gallons of water.

NO: Not detectable at testing limits.

By-product of drinking water:

- **Chlorine:** A by-product of drinking water disinfection.

Property of Illinois:

- **MRDLG:** Maximum Residual Disinfectant Level Goal: The level of a disinfectant added to drinking water as a part of the treatment process or in auxiliary use to protect against microbial contamination when按规定的

MRDL: Maximum Residual Disinfectant Level. The level of a disinfectant allowed in drinking water. There is convincing evidence that a disinfectant is necessary for control of microbial contaminants.

pCi/L: Picocuries per liter. A measurement of the natural rate of disintegration of radioactive contaminants in water.

ppm: parts per million. Also micrograms per liter - or one ounce in 7,350,000 gallons of water.

pM: parts per million. Also micrograms per liter - or one ounce in 7,350,000,000 gallons of water.

NO: Not detectable at testing limits.

Not applicable:

- Date Sampled: If sample date appears, the testing was conducted in 2017.

Also milligrams per liter:

- **ppb:** parts per billion. Also micrograms per liter - or one ounce in 7,350 gallons of water.

ppm: parts per million. Also micrograms per liter - or one ounce in 7,350,000 gallons of water.

NO: Not detectable at testing limits.

By-product of drinking water:

- **Chlorine:** A by-product of drinking water disinfection.

Property of Illinois:

- **MRDLG:** Maximum Residual Disinfectant Level Goal: The level of a disinfectant added to drinking water as a part of the treatment process or in auxiliary use to protect against microbial contamination when按规定的

MRDL: Maximum Residual Disinfectant Level. The level of a disinfectant allowed in drinking water. There is convincing evidence that a disinfectant is necessary for control of microbial contaminants.

pCi/L: Picocuries per liter. A measurement of the natural rate of disintegration of radioactive contaminants in water.

ppm: parts per million. Also micrograms per liter - or one ounce in 7,350,000 gallons of water.

pM: parts per million. Also micrograms per liter - or one ounce in 7,350,000,000 gallons of water.

NO: Not detectable at testing limits.

Not applicable:

- Date Sampled: If sample date appears, the testing was conducted in 2017.

Also milligrams per liter:

- **ppb:** parts per billion. Also micrograms per liter - or one ounce in 7,350 gallons of water.

ppm: parts per million. Also micrograms per liter - or one ounce in 7,350,000 gallons of water.

NO: Not detectable at testing limits.
WHAT IS THE SOURCE OF U OF I DRINKING WATER?

The University of Illinois purchases drinking water from Illinois-American Water Company (IAWC), Champaign District. Water is delivered to campus via five metered locations, and this configuration is known as a consecutive water system. Therefore, the distribution system is considered a public water system. The campus system includes approximately 46 miles of water main. The University distributes this water to a vast majority of campus buildings, however a minority of buildings are supplied directly from IAWC. The following information about IAWC, Champaign District water supply is from their 2017 Annual Water Quality Report, and is available by calling 217-373-3273 or visiting their website at www.illinoisamerican.com. The source of supply for IAWC is groundwater. Currently, 21 wells deliver water for treatment to two lime-softening plants; the Matis Avenue Plant, located in Champaign, and the Bradley Avenue Plant, located west of Champaign. The wells are primarily located in the Mahomet Sands Aquifer and supply water to both plants. The wells range from 208 to 366 feet in depth and are protected from surface contamination by geologic barriers in the aquifers. An aquifer is a porous underground formation (such as sand and gravel) that is saturated with water.

SOURCE WATER ASSESSMENT

The IEPA has completed a source water assessment for the Champaign County system. In this report, IEPA indicates that the wells supplying Champaign County are not geologically sensitive.

To determine IAWC - Champaign's susceptibility to groundwater contamination, a Well Site Survey Report from February 1991 and a source inventory conducted in 1999 by the Illinois Rural Water Association in cooperation with the Illinois EPA, were reviewed. Based on the information contained in these documents, potential sources of groundwater contamination are present that could pose a hazard to groundwater pumped by the IAWC-Champaign's community water supply wells.

The IEPA has determined that IAWC-Champaign's wells are not susceptible to inorganic chemical (IOC), volatile organic chemical (VOC) and synthetic organic chemical (SOC) contamination. This determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data for the wells. The IEPA has made recommendations to further minimize the risk to the facil- ity's groundwater supply. If you would like additional information on the source water assessment, please contact Safety and Compliance at 217-265-9828 or go to www.epa.illinois.gov/topics/water-quality/swq/index.

PROTECTING THE WATER YOU DRINK

To ensure that tap water is of high quality, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health as public water systems. IAWC's advanced water treatment processes are designed to reduce any such substances to levels well below any health concern.

The University is required to test water in its distribution system for coliform, lead, copper, trihalomethanes, and halo-acetic acids. IEPA requires 15 samples per month to be analyzed for coliform. In 2017, normal operations of the University of Illinois' water distribution system resulted in approximately 16 samples per month for coliform. The most recent testing results for coliform, lead, copper, halo-acetic acids and total trihalomethanes (THM) are provided in the Data Summary table at the end of this report.

GENERAL INFORMATION ABOUT ALL DRINKING WATER

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it can dissolve naturally-occurring minerals and, in some cases, radioactive material. It can also dissolve substances resulting from the presence of animals or human activity. Substances that may be present in source water include:

- Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife;
- Inorganic Contaminants, such as salts and metals, which may be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff and septic systems; and
- Radioactive Contaminants, which may occur naturally or result from oil and gas production and mining activities.

All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA and Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline at 800-426-4791 or at www.epa.gov/safewater/lead.

IMPORTANT HEALTH CONSIDERATIONS

To ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available by calling the USEPA Safe Drinking Water Hotline at 800-426-4791 or at www.epa.gov/safewater/lead.

ARSENIC

While your drinking water meets the EPA's standard for arsenic, it does contain low levels of arsenic. EPA standards balance the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2017 DATA SUMMARY

The following table lists the contaminants that were detected in your water. The presence of contaminants does not necessarily indicate that the water poses a health risk. The data in this table represents a combination of the testing results on finished water from the distribution system and its parent supply, IAWC, Champaign District. The University monitors water daily at five separate metered feeds. Additionally, the University monitors water at eight points within the campus distribution system. LAWC monitors the parent wa- ter supply at points prior to entering the campus distribution system.

RADON

Radon is a radioactive gas that comes mainly from the soil; however, some groundwater may also contain radon. The USEPA is proposing limits on radon in drinking water depending on other steps that are used to reduce radon from other indoor sources. Inhalation of radon gas has been linked to lung cancer. The contribution from drinking water is usually small compared to normal indoor levels. If you are concerned about radon in your home and would like information on how to have your home tested, contact the Champaign-Urbana Public Health District at 217-352-7601 or the Nation- al Radon Hotline at 1-800-SOS-RADON or www.sosradon.org.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is pri- marily from materials and components associated with service lines and home plumbing. The University of Illinois cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flush-