DEFINITIONS

- **MCLG**: Maximum Contaminant Level Goal: The highest level of a contaminant that is allowed in drinking water. MCLGs as feasible using the best available technology.
- **MCL**: Maximum Contaminant Level: The level of a drinking water contaminant that is allowed in drinking water. There is no known or expected risk to health.
- **MDL**: Method Detection Limit: The lowest level of a contaminant that can be measured with a specified degree of confidence.
- **MDRL**: Method Detection Reporting Limit: The lowest level of a contaminant reporting limits that can be measured when there is no known or expected risk to health.

REGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>Sampled by: Date</th>
<th>MCLG</th>
<th>MCL</th>
<th>Found**</th>
<th>Detentions</th>
<th>Violation?</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm) *</td>
<td>U of I 2015</td>
<td>1.3</td>
<td>1.3</td>
<td>0.14</td>
<td>0</td>
<td>NO</td>
<td>Carcinogenesis of household plumbing; Exposure from wood preservatives</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>U of I 2014</td>
<td>0</td>
<td>15</td>
<td>13</td>
<td>2</td>
<td>NO</td>
<td>Carcinogenesis of household plumbing; Exposure from wood preservatives</td>
</tr>
<tr>
<td>Arsenic (ppm) *</td>
<td>U of I 2014</td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
<td>Single Sample</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Fluoride (ppm) *</td>
<td>U of I 2014</td>
<td>4</td>
<td>4</td>
<td>1.5</td>
<td>0</td>
<td>NO</td>
<td>Water additive that promotes oral health.</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>U of I 2014</td>
<td>5</td>
<td>5</td>
<td>1.8</td>
<td>0.14</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Copper (ppm) *</td>
<td>U of I 2014</td>
<td>1.3</td>
<td>1.3</td>
<td>0.14</td>
<td>0</td>
<td>NO</td>
<td>Carcinogenesis of household plumbing; Exposure from wood preservatives</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>U of I 2014</td>
<td>0</td>
<td>15</td>
<td>13</td>
<td>2</td>
<td>NO</td>
<td>Carcinogenesis of household plumbing; Exposure from wood preservatives</td>
</tr>
<tr>
<td>Arsenic (ppm) *</td>
<td>U of I 2014</td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
<td>Single Sample</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Fluoride (ppm) *</td>
<td>U of I 2014</td>
<td>4</td>
<td>4</td>
<td>1.5</td>
<td>0</td>
<td>NO</td>
<td>Water additive that promotes oral health.</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>U of I 2014</td>
<td>5</td>
<td>5</td>
<td>1.8</td>
<td>0.14</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
</tbody>
</table>

STATE REGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>Sampled by: Date</th>
<th>MCLG</th>
<th>MCL</th>
<th>Found**</th>
<th>Detentions</th>
<th>Violation?</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm) *</td>
<td>U of I 2015</td>
<td>20</td>
<td>20</td>
<td>0.6</td>
<td>0</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Chloride (ppm)</td>
<td>U of I 2015</td>
<td>25</td>
<td>25</td>
<td>0.6</td>
<td>0</td>
<td>NO</td>
<td>Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (mg/L)</td>
<td>U of I 2015</td>
<td>30</td>
<td>30</td>
<td>11.3</td>
<td>20.6</td>
<td>NO</td>
<td>Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Total Nitrogen (TN) (mg/L)</td>
<td>U of I 2015</td>
<td>5</td>
<td>5</td>
<td>1.8</td>
<td>0.14</td>
<td>NO</td>
<td>Stream of natural deposits; Rain from rooftop; Iron from glass and electronics products</td>
</tr>
<tr>
<td>Total Organic Compounds (TOC) (mg/L)</td>
<td>U of I 2015</td>
<td>80</td>
<td>80</td>
<td>20.6</td>
<td>66</td>
<td>NO</td>
<td>Rain from rooftop; Iron from glass and electronics products</td>
</tr>
</tbody>
</table>

WATER QUALITY REPORT

NO Decay of natural and man-made Prairie Rivers

INTRODUCTION

This 2015 Water Quality Report from the University of Illinois at Urbana-Champaign provides information about the source of campus drinking water, contaminant testing, general health precautions, and how calendar year 2015 sample results compare to regulatory requirements. The University is pleased to report that all United States Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency (IEPA) drinking water quality standards have been met, with no violations of maximum contaminant levels (MCLs).

If you have any questions about this report or U of I drinking water quality, please contact Facilities & Services, Safety and Compliance at 217-265-9828 or via email at malves@illinois.edu. A copy of this report is available from our website at http://gsx.fs.illinois.edu/waterquality/2015 or by contacting Safety and Compliance.

In compliance with state and USEPA regulations, the university issues a report annually describing the quality of your drinking water. The purpose of this report is to increase understanding of drinking water standards and raise awareness of the need to protect your drinking water sources.

WATER QUALITY INFORMATION

- **Illinois American Water**: www.illinoisamwater.com
- **United States Environmental Protection Agency**: www.epa.gov/safewater
- **Safe Drinking Water Hotline**: 800-426-4791
- **Illinois Environmental Protection Agency**: www.epa.state.il.us

LOCAL GROUPS INVOLVED IN WATER AND ENVIRONMENTAL ISSUES

- **Mahomet Aquifer Consortium**: www.mahometaquiferconsortium.org
- **Surf Your Watershed**: Locate your watershed and a host of information. www.epa.gov/surf
- **Environfacts**: U.S. environmental data. www.epa.gov/environfacts
WHAT IS THE SOURCE OF U OF I DRINKING WATER?

The University of Illinois purchases drinking water from Illinois-American Water Company (IAWC), Champaign District. IAWC water is delivered through five separate metered feeds into the university water distribution system, which consists of approximately 46 miles of water main. The university distributes this water to the majority of campus buildings. However, some buildings are connected directly to the IAWC water distribution system. As such, the distribution system is considered a public water system. The following information about IAWC, Champaign District water supply is from their 2015 Annual Water Quality Report, available by calling 800-538-1125 or visiting their website at http://www.illinoiswater.com.

The source of supply for IAWC is groundwater. Currently 28 wells deliver water for treatment to three lime-softerning plants: the Lincoln Avenue Plant, located in Champaign, and the Bradley Avenue Plant, located west of Champaign. The wells are primarily located in two areas. The northern well field taps the Glasford Aquifer and consists of seven wells that supply the Lincoln Avenue Plant. The west well field consists of 21 wells that draw from the Mahomet Sands Aquifer and supply water to all three plants. The wells range from 150 to 366 feet in depth and are protected from surface contamination by geologic barriers in the aquifers. An aquifer is a porous underground formation (such as sand and gravel) that is saturated with water.

SOURCE WATER ASSESSMENT

The IEP A has completed a source water assessment for the Champaign County system. In this report, IEP A indicates that the wells supplying Champaign County are not geologically sensitive. The IAWC’s susceptibility to groundwater contamination, a Well Site Survey Report from February 1991 and a source inventory conducted in 1999 by the Illinois Rural Water Association in cooperation with the IEP A, were reviewed. Based on the information contained in these documents, potential sources of groundwater contamination are present that could pose a hazard to groundwater pumped by the IAWC community water supply wells. The IEP A has determined that IAWC – Wells #35, #40, #41, #42, #43, #45, #46, and #47 are susceptible to inorganic chemical (IOC), volatile organic chemical (VOC) and synthetic organic chemical (SOC) contamination. This determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data for the wells. The IEP A has made recommendations to further minimize the risk to the facility’s groundwater supply. If you would like additional information on the source water assessment, please contact Safety and Compliance at 217-265-9828 or the Groundwater Section of the IEP A at 217-785-4787.

PROTECTING THE WATER YOU DRINK

In order to ensure that tap water is of high quality, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health as public water systems. IAWC’s advanced water treatment processes are designed to reduce any such substances to levels well below any health concern. The university is required to test water in its distribution system for coliform, lead, copper, haloacetonanes, and haloacetic acids. IEP A requires 15 samples per month to be analyzed for coliform. In 2015, normal operations of the U of I water distribution system resulted in approximately 25 samples per month. The most recent testing results for coliform, lead, copper, haloacetic acids, and total haloacetonanes (TTHM) are provided in the Data Summary table at the end of this report.

GENERAL INFORMATION ABOUT ALL DRINKING WATER

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels across the surface of the land or through the ground, it can dissolve naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Substances that may be present in source water include:
- Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife;
- Inorganic Contaminants, such as salts and metals, which may be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff and septic systems; and
- Radioactive Contaminants, which may occur naturally or result from oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the USEPA Safe Drinking Water Hotline at 800-426-4791.

IMPORTANT HEALTH CONSIDERATIONS

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA Safe Drinking Water Hotline at 800-426-4791.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

USEPA and Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline at 800-426-4791.

RADON

The USEPA is proposing limits on radon in drinking water depending on other steps that are used to reduce radon from other indoor sources. Radon is a radioactive gas that comes mainly from the soil; however, some groundwater may also contain radon. Inhalation of radon gas has been linked to lung cancer. The contribution from drinking water is usually small compared to normal indoor levels. If you are concerned about radon in your home and would like information on how to have your home tested, contact the Champaign-Urbana Public Health Department at 217-352-7961 or the National Radon Hotline at 800-SOS-RADON.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available by calling the USEPA Safe Drinking Water Hotline at 800-426-4791 or at http://www.epa.gov/safewater/lead.

2015 DATA SUMMARY

The following table lists the contaminants that were detected in your water. The presence of contaminants does not necessarily indicate that the water poses a health risk. The data in this table represents a combination of the testing results on finished water from the distribution system and its parent supply. IAWC, Champaign District. The university monitors water daily at five separate metered feeds. Additionally, the university monitors water at eight points within the campus distribution system. IAWC monitors the parent water supply at points prior to en-tailing the campus distribution system.